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Abstract—Orientation estimation is considered as an important
and vital step towards many pattern recognition and image
enhancement tasks. In a noisy environment, the gradient-based
estimations provide poor results. A pre-smoothing Gaussian
function with an appropriate scale is conventionally used to get
better gradients. Later on, fixed-scale approach was extended to
include multi-scale gradient estimates. More specifically, multi-
scale orientation estimation, based on scale-space axioms, in spa-
tial domain can be formulated. To further boost the performance
of multi-scale orientation estimates, a Fourier domain foundation
in the form of Directional Filter bank (DFB)is incorporated with
multi scale spatial domain approach. This paper presents an
approach for estimation of local orientations using multi-scale
approach both in spatial and fourier domain. In fourier-domain
approach, two linear combinations are deployed, one across the
directional image, and the other across scales. This is opposed
to only one linear combination across the scales, used in normal
spatial domain technique. Simulations are conducted over noisy
test images as well as real data. Our objective results indicate
that multi-scale fourier domain approach always yields better
estimates at variable level of noise as compared to stand alone
multi-scale spatial domain. The improvements made by fourier
domain estimate can largely be attributed to the use of double
linear combination both across directional bands and across
scales.

I. INTRODUCTION

Orientation Field (OF) estimation is considered to be chal-
lenging task, particularly in the presence of noise. Once
reliably extracted this orientation filed can be utilized in a
number of ways to enhance the quality of the features to be
detected in a given image. The motivation for the desire to
extract reliable orientation filed came from our previous work
on angiogram image enhancement task [4], where a two-
dimensional non-linear diffusion process put forth in [1] for
enhancement was found to be conveniently decomposed as
a separable two one-dimensional diffusion process once we
know local orientations, where one process goes along the
features and the other to go across it. Motivated by their use in
simplifying the enhancement process, we focus here on robust
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estimation of the orientation fields in noisy images.
The most natural tool for finding orientations at location
(z,y) of an image f, is the gradient, denoted by V f, and

defined as the vector
Vf= (g) ()
9y

The vector has the geometrical property that it points in the
direction of greatest rate of change of f at location (x,y).
The orientations can be defined as 6(z,y) = § + arctan[%]
measured with respect to the x-axis. The images, acquired
from sensors, are usually noisy, making the job of extracting
local orientation hard. One effective way to reduce the effect

of noise is to smooth the image before taking derivatives. For
2,.2

this purpose, a 2-D Gaussian function G(x,y) = et
is employed with a specified scalec. The scale associated
with Gaussian function has to related with features present in
the images. This give rise to Scale-space theory [12], which
suggest to use variable scales for different features. Here, we
looked towards Scale-space theory for guidance to provide a
unified framework for selecting appropriate scales for effective
and reliable local orientation estimations.

A simple but elegant regularization step was proposed by
Kass & Witkin in [2], which allows local gradient estimates to
be averaged. They introduced the idea of doubling the orienta-
tion angles and averaging the angles in a local n X n window
with x- and y-component treated separately. In the mean time,
the idea of orientation diffusion was also floated [15].However,
the orientation diffusion on average takes large number of
iterations to converge. Later on, the authors in [5] shown that
based on the above idea, an effective method for computing
the orientation filed of a fingerprint image can be derived.
The derived method is mathematically equivalent to taking
the principal component analysis of autocorrelation matrix of
the gradient vectors in a local neighborhood. Building upon
this, a PCA-based method in a multi-scale framework was
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Fig. 1. Orientation Estimation-The figures on the top row shows the test
image, along with its true directions. The second row shows the noisy test
image with its fixed-scale gradient-based orientation estimation on the right.
The third row depicts the performance of multi-scale spatial domain on the
left, and multi-scale fourier domain on the right.

introduced in [3] which effectively enforced smoothness across
scales. Since the method works in a multi scale environment,
it provides a compromise between native resolution of the
orientation field and its relative accuracy. The PCA analysis is
applied to find the maximum likelihood (ML) estimate of the
local orientation by finding the optimal local neighborhood.
Though the multi-scale PCA technique is shown to produce
robustness against noise, its performance suffers as the amount
of noise increases. For noisy environment, reliable orientation
estimates can be obtained in the Fourier domain [8]. Another
recent article [7] proposes the use of parallel neighboring
cells to improve the local estimate. However, the size of the
neighborhood is fixed for all the pixels under consideration.
In the same vein, a reliable orientation estimate is also put
forth in [9]. However, all these methods deal in one way or
the other with the spatial domain enhancements. In this paper,
we present the compromise between native resolution of local
orientation estimate and the degree of accuracy in the Fourier
domain.

There are a few fixed-scale transform domain orientation
estimation techniques reported in literature. A curvelet-based
method for local orientation is introduced in [10], where a
mother curvelet is scaled and rotated to find the optimal local

orientation. However, the method is strictly fixed-scale with
assumption of knowing the object size. Another Fourier-based
technique is demonstrated with finding the fiber orientation of
a paper surface [11]. Here Fourier transform of the image is
taken and then converted to polar co-ordinates. The power
spectrum is radially accumulated along various orientation.
The orientation of the paper is announced with maximum
accumulation along a given orientation. This method provided
global orientation of a given paper image. Considering a tex-
ture image as a combination of piecewise linear components,
a directional filter bank approach has been successfully used
in enhancing weak features [4]. Specifically, the input image
is first decomposed using a Decimation-free Directional Filter
Bank (DDFB), referred to as DFB in the remainder of the
paper, into a set of directional images, each of which contains
linear features in a narrow directional range. The directional
decomposition has one main advantage. The directional im-
ages, as output of DFB, contain only features in a narrow
directional band and are found to contain significantly less
noise as compared to the original image. The suppression
of noise in directional images facilitates the computation of
gradients. However, the gradient computation for declaring a
local orientation among directional images is performed within
a fixed block/scale. Thus, essentially it constitutes a fixed-scale
DFB-based fingerprint orientation calculation and pretty much
restricts its capability for noise suppression.

In order to incorporate DFB for multi scale orientation
estimation, we first create a coarse orientation estimate for
each directional image and then average them across the bands
as well as across the scales. This provides us with extra
capability of adaptively changing the scale within the DFB
framework to obtain an optimal orientation estimate with the
characteristics of noise robustness and feature localization.

Fig. 1 shows a three-row array of pictures for comparison
purposes. The first row displays the test image used for
assessing the performance of spatial as well as fourier domain
approaches. The gradient-based approach is working fine with
the noise-free test image. However, we observe that from the
second row, that its performance degrades with the noisy data.
The third row depicts the performance of spatial as well as
fourier domain approaches for the noisy test image. The multi-
scale spatial and fourier domain does a better job at extracting
directions. The fourier domain orientation estimation is clearly
doing an improved job over that of spatial domain, with the
average absolute angle error of approximately {& as compared
to 110 for that of spatial domain. Besides, we also observe in
Fig. 1, a critical limitation of the proposed multi-scale DFB
approach in the center of the test image. Since the center
contains sharp turns, the fourier domain approach was not able
to effectively represent these sharp turns as piece-wise linear
segments.

The paper is organized as follows. Section A explains the
multi-scale spatial domain method. Multi-scale DBF based
orientation estimation is proposed in section B. Simulation
results and objective quality measure are discussed in Section
C. Finally, Section D presents our concluding remarks.



A. Multi-Scale Spatial domain method

For the sake of orientation estimation, the covariance matrix
is formed by gradient vectors in a local square window of
width n, as described below.

Y1 Gre  2ie1 Yiaiy
Z?:l 9i,xGiy Z?:l 91‘2,;; ,

where g; , and g; ,, are derivatives in 2 and y direction at pixel
location indexed by i, respectively. The Principal Component
Analysis (PCA) of the covariance matrix provides the eigen
vectors and their eigen values. The image orientation can be
obtained from the eigen vectors of the matrix C'. The eigen
values associated with their corresponding eigen vectors rep-
resent the square root of the energy in corresponding principal
directions. The orientation estimation can be improved upon
by setting it in a multiscale framework [13]. The multi scale
model describes images in terms of an evolution from coarse
to fine scales, and is also more similar to the human visual
system. The major problem of the orientation estimation is the
noise sensitivity of the gradient operator. In order to depress
the noise effect, one solution is using larger estimate window,
since more neighboring gradients will be used to get the
estimate and the averaging process will depress or eliminate
the noise effect all together. But this will cause the loss of the
estimate resolution. A mechanism with both noise robustness
and feature localization is needed. Multi scale model provides
an efficient way to combine the information from coarse scales
and fine scales. The multi scale approach can be used to
obtain Minimum Mean Square Error (MMSE)estimate, which
is based on a Kalman filter-like multi scale model, introduced
in [5].

A Multi-scale spatial domain approach for orientation estima-
tion is formulated in this research as follows. Given an input
image f(z,y), this ingagg, is convolved by a Gaussian kernel
g(z,y;t) = Q;tze% at a scale ¢ , the parameter ¢ is
equal to the square of the standard deviation o, to give a scale-
space representation L(z,y;t) = g(z,y;t) * f(x,y). Then for
each scale-space image L(x,y;t), we compute the second-
order partial derivatives in the form of the Second Moment
Matrix, as follows.

C= 2)

L2 L,L,

3
LI, 12| 3)

H(z,yt) =
where L, represents the first-order partial derivative of the
scale-space image L(x,y;t) with respect to z-axis, L, rep-
resents the first-order partial derivative of the scale-space
image L(x,y;t) with respect to y-axis. This four-element
matrix is computed for each pixel of the scale image. This
symmetric positive-definite matrix can be decomposed using
eigen values analysis. We get two eigen values A, and
Amaz, With associated eigen vectors ep, depicting direction
along the texture, and second eigen vector ez, corresponding
to the direction normal to the texture at that pixel.

Experiments show that the scale parameter of the Gaussian
pre-smoothing kernel ¢ must be carefully tuned to the width

of the directional feature present in a given image. The eigen
vector ep ¢ calculated at a given scale ¢ will provide the
texture orientation at a pixel location in the form 6(z,y;t) =
arctan(zz::jz ). Next we take the multi-scale measure of scale-
space texture representation as suggested in [6], [14], defined
as

A2,y t) = 12 Amaz — Amin)?s )

for each pixel location. In this way we computed the ori-
entations and their strength measure for the whole family
of the scale-space images. To estimate the most likelihood
orientation, we first decompose the eigen value ey into its
orthogonal components, that is ea ;.4 and ez ,.¢. Then for each
pixel location, the final orientation estimate is computed as
linear combinations of these orthogonal components with their
respective strength measures as described below.

Az, y,1 Az, y,2
X = 7( v 1) €2m;1+7N( :2) 2,2;2

N )
ZlA(fE,y,t) Zl Az, y,1)
t= t=

A(x,y, N
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> Az, y,t)

t=1
Similarly, we computed the Y part of the orientation esti-
mate. Next, final orientation estimate for the whole image is
computed as arctan % While implementing the algorithm,
we are in need of scale range to be used for a given image.
The process of selecting the scale range can be automated.
We adopted a similar approach as described in [12]. We
constructed a scale space by convolving image with Gaussian
having progressively increasing standard deviation taken as
scale parameter. Then, for each scale image, we computed
the average of following normalized coherence measure, as
described in [12].

1 2.3
SnormL =12 (Li + Ll2}) + gtz ((Lfﬂ? - Lyy)2 + 4L§y) (6)

The t represents the scale parameter, L andL,, denoted
the first- and second-order partial derivative of the image in x
direction. Similarly. L,andL,, show the partial derivatives in
the y direction. The measure provides maximum for a given
average local scale, ¢;,.4;. The scale range can then be safely
selected as a set that initiates with scale %TC‘” and ends with
scale 4t;pcql-

B. Multi-scale Fourier Domain Approach

In order to embed the DFB structure with the multi-scale
spatial domain approach discussed earlier, we adopted the
following procedure.

Step 1An image f(zx,y), in which directional texture can be
modeled as piece-wise linear segments, is first convolved with
a smoothing Gaussian of a given scale, to form a scale-space
image.

Step 2 The scale-space image is then decomposed using Direc-
tional Filter bank in a number of directional images f(x,y;1),
where ¢ = 1,2,--- ,n corresponds to the orientation associ-
ated with each directional image in the range 61,05, - ,0,.




Two directional images are displayed in Fig. along with
their associated energy measures. We observe that directional
images are fairly concentrated in a narrow angular width, in
this case it is {5, and the energy images are also representative
of their strength measures.

Step 2 For each pixel location, the directional information
present at directional images need to be linearly combined.
That is what we usually do in the conventional setup. However,
due to the presence of local noise, it is proposed that this job
of linear combination across the directional images should be
set in the scale-space framework.

Therefore, we first define a set of scalesast € 1,2,--- | N.
Then, to measure the strength associated with a given direc-
tional image, we define its strength measure same as that in
the previous section, that is A(x,y;i,t), where i represents
the direction 6; and ¢ represent the scale chosen. The strength
calculation can be mathematically defined as

Az, y;0,t) = 2 (Amaz)>- (7)

Step 3 Now, the directional information available to use
through directional image 6; are linearly combined using accu-
mulated strength measures at each pixel across its directional
images. This ends up in an orientation image at a given scale
t. Let us call it O(z,y;t). That is,

O(z,y;t) = Z

0;. (8)

Step 4 Then, having a whole family of O(z,y;t) and strength
images defined at each pixel location and scale as S(z,y;t) =
n

> (z,y;i,t), we are in a position to repeat the process of
i=1
linear combination again, but this time across the scales. This

provided us with a final robust estimate 0;pq(2,y) of the
orientation image. That is,

s (z,y;t)
afinal(‘rvy) = ZéO(xﬂ%t) (9)
=Y S y:t)
t=1
C. Results and Discussions
In order to assess the quality of the proposed multi-scale
orientation estimate over that of single-scale approach, we
tested the approach for a synthetic test image, referred to as
Jahne’s pattern [16]. The mathematical expression governing
the pattern is depicted as:
Tm — |X| 1

kmlx|? . [1
—t h _
el Rl S

g(x) = gosin( . (10

where 7, is the maximum radius of the pattern, tanh(””T_‘xl)
as an approximation to a step function with a as the location
of the step and w is the width of the transition. We set the
parameters so that the maximum instantaneous frequency of
km = 0.57 is reached in the center of the image edges,
and then the tapering function prevents aliasing artifacts from

Fig. 2. Creation of Directional Images: The top figure shows third directional
image out of total 32 bands uniformly distributed over the range from —7 to
7 and its associated strength below.

appearing as we move out to the corners. The pattern as shown
in Fig. is displayed on a grid 400 x 400. The test image with
and without noise is shown in Fig. 1.

The MATLAB gradient functions are used to compute the
numerical gradients in = and y directions. Then MATLAB
arctan function is invoked to compute the true orientation field
of the test image as depicted in first row right in Fig.1. The
ground truth orientations for the test image can be calculated
as O(x,y) = arctan(%). Now we will add Gaussian
noise of zero mean and variance that increases progressively
in the test image. These noisy test images are then presented
to both, the single-scale PCA and multi-scale approaches to
assess their performances. we use scales that range from 0.5-6.
For defining the objective criterion, we use the absolute angle
difference in radian. The pixel-wise angle error can be defined
as

(1)

The performance of multi-scale fourier approach is also

E(eestimateda eoriginal) = |eestimated - eoriginal |
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Fig. 3. The graph showing the comparison of multi-scale spatial domain
orientation estimate with that of multi-scale fourier domain. The curves are
drawn as average angle error in radian against the increasing value of noise
variance.

compared with multi-scale spatial technique as a function of
noise variance. We see from the Fig. 3 that the fourier domain
error is all times less than that of spatial domain and as we
move towards the higher noise variance the fourier domain
curve maintains a constant advantage over that of spatial
domain. The curve plotted here are the average of 100 runs
of random noise generators with 100 different seed points.
In another set of experiments, we investigated the impact
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Fig. 4. The Effect of Contrast: The Top row-Left is a test image synthesized
as a pixel-wise multiplication of a sinusoidal contrast variation interference
pattern as we move around the image center and our ground truth image
having concentric circle pattern. The Top row-Right is the result of absolute
orientation error image using gradients. The second row-left is the error image
due to multi-scale spatial approach. The second row-right is the orientation
error image due to the proposed multi-scale fourier technique. The third row-
left is the orientation filed due to multi-scale spatial and third row-right is the
multi-scale fourier based orientation filed for the test image.

of contrast on the robustness of the proposed local orientation
estimation. A test image is synthesized by pixel-wise mul-
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Fig. 5. Real Fingerprint Images: The performance of the gradient technique,
multi-scale spatial and that of multi-scale fourier domain for the real finger-
print image taken from the international fingerprint database NIST. We observe
the consistent behavior of the proposed multi-scale DFB for the noisy regions.
The CPU time noted for a Pentium 4 machine with 2 GHz, for the gradient
approach is 0.43 seconds, for multi-scale spatial domain is 1.5 seconds and
that for the multi-scale fourier domain is 3.1 seconds.

tiplication of our ground truth concentric circle image with
amplitude 0.01 and an interference pattern having periodic
dark and white regions with amplitude 0.5. The product results
in a test image where contrast is varying as move on the image
from one pixel location to the next. The interference image is
synthesized as follows,

f(z,y) = sin(0),

where § = arctan(%). Since true orientations are available
for the ground truth, we compare the strength of our proposed
technique with that of multi-scale PCA and the gradient-based
approach. The absolute angle error is displayed in a color-
coded manner. The Fig. 4 shows that the fourier method does
a fairly good job of tracking the true orientations even in dark
regions of the test image to some extent.

The proposed spatial and fourier domain estimations was
also tested on the real fingerprint images from NIST database
publicly available. We observe that fourier domain orientation
estimation provides improve flow directions, consistent with
the human expert predictions. The Fig. 5 reveals the fingerprint
orientation fields for the three methods.

12)

D. Concluding Remarks

This paper presents the extension of multi-scale PCA to
that of Fourier domain. A robust algorithm is presented that
incorporates Directional filter bank images as foundation for
applying multi-scale PCA. Experiments were conducted on
test images with true orientation known. It was suggested with
the objective criterion that fourier domain multi-scale will pro-
vide better results for orientation estimation in noisy environ-
ment over that of multi-scale spatial domain. This robustness
can be attributed to the presence of two-dimensional linear
combination, where one that goes across the directional images
and then across the scales. This attribute was found effective
in combating the local noise present without disturbing the
flow directions in a given image.
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